miércoles, 4 de septiembre de 2013

HOMOTECIA


Homotecia 

Transformación geométrica en la que a cada punto A de una figura le corresponde otro A’ de forma que estén alineados con otro (centro O) y la razón k entre ellos sea constante: OA/OA’=k

Dos figuras homotéticas son homólogas y tienen sus lados correspondientes paralelos y son proporcionales: a/a’= b/b’=k

La homotecia conserva los ángulos.
El producto de 2 homotecias de distinto centro y potencia es otra homotecia cuyo centro está alineado con los otros dos.
Forman grupo:
5- Operación interna: el producto de 2 homotecias es otra homotecia.
6- Es asociativa.
7- Tiene elemento neutro que es la homotecia de potencia k = 1.
8- Posee elemento simétrico.



A la izquierda, un cuadrado se transforma en otro estando el centro de la homotecia en el vértice O de ambas en una razón de 7/4.
A la derecha una circunferencia se transforma en otra desde el centro O a razón de 5/3. En este caso como el centro de la homotecia está en el extremo de un diámetro de la circunferencia original, este es un punto invariante en la transformación, con lo cual las dos circunferencias son tangentes en este punto.


En toda homotecia se cumplen varias propiedades: que el centro de proyección alinea los puntos homotéticos con él. Que las figuras homotéticas tienen sus lados paralelos y conservan sus ángulos. Que existe una relación de proporcionalidad entre las dos figuras homotéticas. Que las figuras homotéticas son siempre iguales de forma pero, por regla general, de distinto tamaño, con lo que la homotecia se transforma en un método directo para cambiar de escala gráficamente. La homotecia es una homología plana en la que los lados homotéticos se cortan en la recta del infinito.

La homotecia es directa o positiva si las dos figuras quedan del mismo lado respecto al centro de proyección mientras que es inversa o negativa si ocurre lo contrario, como en este caso en el que un triángulo se transforma en el otro desde un centro mediante un homotecia.
Como en toda homotecia se constatan todas las propiedades de la homotecia: que los lados de las figuras homotéticas son paralelos, que se cambia la dimensión de todos los lados proporcionalmente, que se conserva los ángulos, que posee cada par de puntos homotéticos alineados con el centro de proyección, etc.


Otro ejercicio aparte del típico de cambio de escala que se puede resolver mediante la aplicación de una homotecia lo tenemos en el siguiente ejemplo.
Dadas dos rectas a b, determinar la dirección que debe seguir otra recta para que pasando por el punto P se corte con las dos rectas dadas a b.
Se hace un triángulo cualquiera m, (azul en el dibujo), de manera que uno de sus vértices coincida con el punto dado P, y los otros dos vértices estén sobre las rectas dadas a b. Se construye otro triángulo que tenga los lados paralelos al anterior y que contenga sus vértices también incidentes en las rectas dadas a b. Este triángulo dibujado en color ocre, es homotético del anterior, lo que quiere decir que los vértices de ambos triángulos están alineados con un centro de proyección, y como los otros dos vértices ya los tiene alineados, los dos vértices que faltan se cortaran en el mismo centro de proyección que no es otro lugar que la intersección de las rectas a b.
Por tanto la recta que corta a las otras dos y que pasa por el punto P viene dada por el vértice T del triángulo ocre: la recta PT verde corta a las rectas a b y pasar por P.


Dadas dos rectas a b y un punto P sobre a, construir otro punto O que equidiste de la recta b y del punto dado P.
Construimos dos rectas que se corten con el mismo ángulo que las dadas y tomamos un punto T de una de ellas desde el que hacemos una circunferencia (en color amarillo) tangente a la otra recta obteniendo M como punto de tangencia. Tenemos que esta circunferencia corta a la paralela a a en el punto S.
Alineamos P con S y los vértices de las rectas que se cortan obteniendo en la intersección de estas dos rectas el punto V, que es el centro de la nueva homotecia. Alineando este punto con T y M obtenemos en la intersección de las rectas a b los puntos O M', respectivamente. Se tiene que PO=OM', que era lo que se quería encontrar.






Dadas tres rectas abc y una circunferencia m, construir un triángulo T inscrito en la misma cuyos lados sean paralelos a las rectas dadas.

Se construye un triángulo J con los lados paralelos a las rectas dadas y en la intersección de las mediatrices de sus lados tenemos el centro de la circunferencia S circunscrita al mismo. Hacemos las dos rectas tangentes exteriores a las circunferencias obteniendo el punto P y alineamos los tres puntos del triángulo J con el centro de proyección P hasta que corten a la circunferencia m teniendo en los tres puntos de intersección el triángulo inscrito T en m.

Homotecias

Los centros de gravedad de las caras de un tetraedro regular son los vértices de otro tetraedro regular homotético.
Tenemos un tetraedro mayor y otro tetraedro homotético del anterior que tendrán todos sus vértices alineados correspondientemente con el centro de la homotecia. Si unimos el centro de cada cara que es en realidad su centro de gravedad, con cada vértice del tetraedro regular obtenemos en la intersección de estas líneas el centro de la homotecia G.
En el triángulo AVD se tiene que VA’/VD=AV’/AD=2/3
Luego los segmentos A’V’ y AV son paralelos y se tiene que están relacionados a un tercio. De igual forma acaece con las aristas.
Los triángulos AVG y A’V’G son semejantes por tanto GV’/GV=1/3.
G es el centro de la homotecia y de la semejanza entre las aristas de los dos tetraedros que se corresponden mediante la autodualidad, que quiere decir que si tomamos los puntos medios de cada cara del tetraedro regular obtenemos la misma figura, en este caso relacionada con la anterior en una homotecia inversa.

VIDEO HOMOTECIA






No hay comentarios:

Publicar un comentario